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Benefits from Using  an Artificial Neural Network as a Prediction
Model for Bio-hydrogen Production
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The performance of the glucose-based production of H2 in a batch reactor was predicted by an artificial
neural network (ANN). The potential of utilizing an ANN modeling approach to simulate and predict the
hydrogen production of Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) was investigated. Sixty
experimental data records have been utilized to develop the ANN model. In this paper, a unique architecture
has been introduced to mimic the inter-relationship between three input parameters: initial substrate
concentration, initial medium pH and temperature (10 g/l, 6.0±0.2, 37°C, respectively). A comparative
analysis with a traditional Box-Wilson Design (BWD) statistical model proved that the ANN model output
significantly outperformed the BWD model at similar experimental conditions. The results showed that the
ANN model provides a higher level of accuracy for the H2 prediction and fewer errors and that it overcomes
the limitation of the BWD approach with respect to the number of records, which merely considers a limited
length of stochastic patterns for H2 prediction.
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Hydrogen is one alternative fuel available to meet our
energy requirements, and its consumption as a fuel is
completely devoid of carbon dioxide emissions, which
distinguishes it from conventional fuels. Hydrogen can be
used as a clean transportation fuel and to produce electricity
via fuel cells. Hydrogen gas can be produced by a chemical
process, but the use of anaerobic microorganisms to
produce hydrogen from biomass has been declared an
innovative and promising biotechnology [1]. Biomass-
based hydrogen production technologies are still under
development; hence, there are limited plant and operation
data that are available at this point. It is, therefore, difficult
for policy makers to identify promising technologies and
the advantages and disadvantages of each technology [2].
Bio-hydrogen is a sustainable energy resource due to its
potentially higher efficiency of conversion to usable power,
non-polluting nature and high energy density. The principal
energy options in the transport sector are ‘green’ electric
energy for electric vehicles, bio-fuels and bio-hydrogen [3].
Fermentative hydrogen production can contribute to both
waste reduction and energy production by using organic
wastes as the substrate [4 - 6]. Many factors, such as
temperature, initial pH and substrate concentrations, can
influence the fermentative hydrogen production, as these
factors can affect the activity of essential enzymes such
as hydrogenases, which changes the activity of the
hydrogen-producing bacteria [7,8]. The H2 yield from
microbial fermentation is dependent upon the microbial
communities present, type of substrate and operational
and environmental factors (e.g., the organic loading rate,
initial pH, or temperature) [9]. A traditional model had been
developed  to predict the hydrogen yield utilizing Box–
Wilson design (BWD) approach by [10]. In fact, BWD
approach could provide acceptable level of accuracy for
predicting the hydrogen yield; however, BWD approach
has some limitations. It could be applied for limited records
of the available data set due to its mathematical

procedure. As a result, it is still required to investigate other
methods that could provide robust model that mimic the
pattern and generalized the hydrogen yield with respect to
the input pattern. Many systematic approaches have been
introduced to facilitate the investigations regarding the
influence of these parameters on the production yield.
Significant progress in the field of nonlinear pattern
recognition and system control theory has made advances
in a branch of nonlinear system theoretic modeling called
artificial neural network (ANN). The quantification and
prediction of the hydrogen yield (HY) for any experimental
approach is considered a highly stochastic process and
with dynamics that could be linear or non-linear
mathematical pocedure experiences a linear/non-linear
mathematical procedure [11,12]. ANN models have been
used successfully to model complex nonlinear input-output
time series relationships in a wide variety of fields [13].
ANN has been used extensively by scientists in the fields
of science and engineering; it is popular as an effective
and efficient way to model the hydrogen production
process. Applying ANN prediction will help in investigating
the effects of factors that affect on the production. The
main objective of this work is to construct a suitable model
to predict the hydrogen production by observing variables,
such as initial glucose concentration, initial medium pH
and reaction temperature. Few references in the field of
bio-hydrogen production for energy that feature an
application of the ANN technique with an acceptable
accuracy, most notably using Clostridium saccharoperbut
ylacetonicum N1-4 (ATCC 13564; CSN1-4) using dark
fermentation. This study was developed as a mathematical
model for the previous work, which used CSN1-4 [1]. Sixty
experimental runs were used for the ANN and compared
with a Box-Wilson Design, which could not predict the
output for more than 15 runs.

* email: walalayah@kau.edu.sa



REV. CHIM. (Bucharest) ♦ 65 ♦ No. 4 ♦ 2014 http://www.revistadechimie.ro 459

Experimental part
Materials and methods
Microbial strain and Culture media

CSN1-4 culture stock was obtained from a culture
collection maintained at the Chemical Engineering
Department, UKM and reported previously by [1, 14]. A
solution of 15% PG medium per litre of distilled water was
used as a growth medium for the inoculum. This medium
was incubated in boiling water for one hour and then filtered
through cotton cloth. The filtrate was sterilised in an
autoclave at 121°C for 15 minutes. TYA medium was used
for the preculture as well as  main culture, and the
composition of this medium per litre of distilled water was
40 g glucose, 2 g yeast extract, 6 g Bacto-Tryptone, 3 g
ammonium acetate; 10 mg FeSO4·7H2O, 0.5 g KH2PO4,
and 0.3 g MgSO4·7H2O per litre of distilled water as reported
by [14; 15].

Experimental set-up
The experimental set-up was adapted from earlier

studies and published in the literature [14, 16].

Models for microbial growth and substrate utilization
The biomass concentration in the batch hydrogen

production experiments depends on the concentration of
the limiting substrate. The classical Monod equation
empirically fits a wide range of data satisfactorily and is
the most commonly applied unstructured, non-segregated
model of microbial growth that describes growth-linked
substrate utilization, as reported previously by [15,17,18]
in the ( eq.1). The growth of microorganisms can be
modeled by the Monod equation.

                                           (1)

where μ is the speciic growth rate, μmax  is the maximum
specific growth rate, Ks is the saturation constant and S is
the limiting substrate concentration. The values of μmax and
Ks are usually estimated following the Monod model by
regression analysis of the Line weaver-Burk linearized
equation as reported by [15,19].

Box-Wilson design (BWD)
BWD is a technique to investigate the impact of the

experimental variables on the response (output) that uses
central composite design (CCD) to create a response
surface that is commonly chosen for response optimization
and depends on the values of the variables, as mentioned
[19]. The experimental data were used to build a second-
order polynomial mathematical model by a regression
method. This mathematical model was taken as the
objective function and was optimized using statistical
software 7.0. The BWD technique can effectively be used
with three variables to relate the inputs of temperature,
initial medium pH and initial glucose concentration to the
output response of the hydrogen production. Eq. (2) was
used to fit the experimental hydrogen yield to construct
the model, as used by [20], who reported that the BWD
model was used to relate the response and three variables
inputs.

                        
 (2)

where the terms (a0 - a9) in the above model are coefficients
of the regression analysis; (T, pH, S) are temperature, initial
medium pH and initial glucose concentration; and ε is the

error, which is normally distributed with mean = 0
according to the observed response. Many reports
employed the BWD model to evaluate the effects of
variables on the response [19,20].

Artificial Neural Networks (ANN)
An artificial neural network (ANN) consists of densely

interconnected processing units that use parallel
computation algorithms. ANN is also referred to as
connectionism, parallel distributed processing, neuron-
computing, natural intelligent systems and machine
learning algorithms. The basic advantage of ANNs is that
they can learn from representative examples without
providing special programming modules to simulate
special patterns in the data set [21, 22]. The ANN can be
trained to perform a particular function by tuning the values
of the weights (connections) between these elements
[23]. The ANN training procedure is performed so that a
particular input leads to a certain target output, as shown
in figure 1 [24]. In other words, an ANN learns from
examples (e.g., of known input/output sequences) and
exhibits some capability for generalization beyond the
training data [25,26]. Multi-layer perceptron function neural
network (MLP-NN) gives an approximation of any input/
output relationship as a linear combination of the radial
basis functions, which are a special class of functions with
the characteristic feature that their response decreases
(or increases) monotonically with distance from a central
point [27]. Each neuron in the hidden layer provides a value
for the degree of membership for the input pattern with
respect to the basis vector of the respective hidden unit.
The output layer is composed of linear neurons. The
numbers of neurons in the input and the output layers of
any network are equal to the number of the inputs and
outputs of the system, respectively [27]. Backpropagation
(BP) algorithm is a generalized learning rule that is based
on the gradient descent algorithm. It is commonly used
with multi-layer networks that use non-linear transfer
functions. The total weighted input at any neuron Xj and its
output activity Yj based on a selected transfer function is
computed as described in the results section [28]. In this
study, it was of interest to develop a forecasting model
that can predict the hydrogen yield as a function of three
different factors. The ANN model, with its nonlinear and
stochastic modeling capabilities, was developed using
MATLAB R2010 7.10.0.499 software and 60 records; this
work also studied the comparison to BWD for the same
records.

Hydrogen yield prediction using ANN
It is very important to predict H2 production using a

comprehensive model for the design, monitoring and
management of bio-hydrogen producing bioreactors. There
are several works regarding the control of complex
bioprocess and biosystems in environmental and industrial
applications [11]. This work examined the development
of a predictive ANN model for H2 production and compared
it with BWD. It has been proven for ANN that a network of
two layers that utilizes a sigmoid and a linear transfer
function in its first and second layers, respectively, can be
trained to model any non-linear relation as reported by [23].
The network model of the multi-layer perceptron
architecture is based on units, which compute a non-linear
function of the scalar product of the input vector and the
weight vector. An alternative architecture of ANN is one in
which the distance between the input vector and a certain
prototype vector determines the activation of a hidden unit
[27,29]. Different MLP-ANN architectures-which kept three
neurons in the input layer and only one neuron in the output
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layer were used to examine the best performance. The
choice of the number of hidden layers and the number of
neurons in each layer is based on two performance indices
[21, 29]. The first is the root mean square value of the
prediction error, and the second is the value of the
maximum error. To optimize the neuron number, the
number of neurons was varied from 5 to 30 neurons in
increments of five, and each number was run ten times.

Then, the mean-squared and iteration numbers were
separately evaluated for the neuron numbers. With
increasing neuron numbers, the MSE decreased for the
training set [11]. To accelerate the training procedure and
to achieve the minimum mean square estimation error
(MSE), the inflow data were normalized, and the steps to
calculate the MSE are presented in the results section. The
ANN-based architecture is employed in this study to provide
the hydrogen yield as a response to different variables as
presented in figure 2.

Results and discussions
Results of the modeling abilities of the BWD statistical
technique

BWD is a statistical technique used to investigate the
impact of experimental variables on the response (output)
that uses central composite design (CCD) to create a
response surface, which is commonly chosen for response
optimization. BWD is based on the Newton statistical
method and depends on the values of the variables [30,31].
The BWD technique can effectively be used with three
variables to relate the response output and variable’s
inputs. However, it has a drawback that it cannot exceed
15 experiments, as reported in the literature. Eq. (2) was
used to fit the hydrogen yield experimental data to construct

the model. It was used previously by [19,20], who reported
that the BWD model was used to relate the response and
three variables inputs. The values of these coefficients and
the statistically insignificant terms for the model that
represent the suitable form of the mathematical model
relating the hydrogen yield (y) to the three variables in terms
of levels is listed in (table 1). A nonlinear least-squares
regression program based on the Gauss Newton method
(GNM) was used to fit eq. (2), and this fitting provides the

Fig. 1. Artificial Neural Networks scheme and
model process

 Fig. 2. The exact neural network architecture for three inputs.
H.L: Hidden Layers; T; pH ; S: input variables.
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predicted hydrogen yield (y), the residual error, the
coefficients (an) of this equation and the fitted response
presented as eq. (3).

y=-649.6-26.47T+58.66pH+4.99S-0.32Tc
2-3.25pH2-

          0.042S2+0.05                                   (3)

This model was used to verify form 2 by using ten
experimental runs for calibration and fitted another five
experimental runs for validation. Figure 3 presented the
statistical prediction of hydrogen with a correlation
coefficient R2= 0.895 and a minimum MSE of 0.0851±
0.001, which was obtained from equation 4. This is in
contrast with the results from 15 experiments that were
performed with ANN, which obtained the best correlation
coefficient R2= 0.984 and MSE of 0.0521±0.001. Figure 4
recorded the calibration and validation regression error of
the hydrogen yield experimentally, and the results showed
the error was between (±15).

Results of the modeling abilities of ANN
Few reports have been studied on the field of hydrogen

production using artificial neural networks ANN, especially

with CSN1-4. In this work, the ANN modeling technique
has the ability to predict 60 experimental runs and more by
using multilayer perceptron (MLP-NN) as presented in
figure 2. The proposed ANN model was examined by using
60 records of hydrogen yield experiments associated with
temperature, pH and initial glucose concentration. It is
important to evaluate the performance of the prediction
model considering a wide range of the stochastic pattern
of the hydrogen yield. Therefore, the proposed ANN model
architecture in figure 2 is re-arranged to consider a total of
60 records of hydrogen yield experiments, from which 50
records were fixed as the training session and the last 10
records for the testing session. Figure 5 illustrates that the
proposed ANN model could provide a hydrogen yield
prediction with an error of less than 5%, except in two
cases exp # 2 and exp # 38 that are during the training
stage. On the other hand, during the testing session, the
ANN model achieved a prediction error below 20% as
shown in figure 6. This is due to the highly stochastic pattern
experienced in the data records (exp # 51 to exp # 60).
Thereafter, the mean-squared error was significant for
iteration numbers that were separately evaluated from the
neuron numbers. This work utilized the hidden layers (6, 4,

Table 1
REGRESSION COEFFICIENTS OF THE

RESPONSE SURFACE MODEL FOR
HYDROGEN YIELD

Fig. 3. Hydrogen yield (%) predicted by BWD statistical

Fig. 4. Calibration and validation error of H2 yield experiments
with BWD
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2) as presented in figure 2. They were employed in the
training and testing stages to obtain the best values
compared to the output and to perform the BP algorithm
learning rules. Therefore, as the number of neurons
increased, the size of the training set decreased, which
was in agreement with [32-34]. this study presented
different methods for investigating model performance.
These were mean absolute relative error (MARE), mean
absolute error (MAE) and MSE. To accelerate the training
procedure they evaluated models by the following  eqs.(4-
6):

                        (4)

                          (5)

                            (6)

where, y is the experimental Hydrogen production, y’
predicted Hydrogen production by model and N is the total
number of data as reported by [33,35]. This work used 15
experiments to compare with the BWD technique, which
merely considers the limited length of 15 records for the
stochastic pattern for hydrogen yield.

Also figure 2 shows the numerical data of the hydrogen
yield from ten experiments associated with temperature,
pH and initial glucose concentration. It was used to train
the ANN model in the eqs. (4-6) to achieve the MARE, MAE
and (MSE) target successfully, and the other five were used
as testing stage. The training curve for the proposed ANN
architecture presented in figure 2 is demonstrated in figure
7, which shows convergence to the target MSE of 0.0001
after 127 iterations. The results based on the ANN model
found a high degree of accuracy and efficiency in achieving

prediction errors lower than those in the central composite
design, which agrees with [36], who reported that the root
mean square error and the standard error of prediction for
the neural network model were much smaller than those
for the response surface methodology model. This
indicates that the neural network model had a much higher
modeling ability than the response surface methodology
model [32,34]. Typically, many such input/target pairs are
used to train a network. Backpropagation (BP) uses input
vectors and corresponding target vectors to train an ANN.
The neural networks with a sigmoid and linear output layer
are capable of approximating any function with a finite
number of discontinuities [37]. The standard BP algorithm
is a gradient descent algorithm in which the network
weights are changed along the negative of the gradient of
the performance function [11]. There are a number of
variations of the basic backpropagation algorithm, which
are based on other optimization techniques, such as
conjugate gradient and Newton methods. Figure 8 shows
the performance of the proposed ANN using the same
dataset presented for the BWD, which includes 15
experiments. It can be concluded that ANN outperformed
the BWD model and provided a higher and a more
consistent level of accuracy for the hydrogen yield at the
same conditions with a correlation coefficient R2= 0.984,
while the standard error in BWD was less than in ANN.
This result follows the work performed by [36], which
investigated the effect of temperature, initial pH and
glucose concentration on fermentative hydrogen
production by mixed cultures in a batch test and found the

Fig. 5. Training process of hydrogen yield using ANN

 Fig. 6.  Testing process of hydrogen yield using ANN

Fig. 7.  Iteration curve for process of hydrogen yield to 15 runs
using ANN

Fig. 8. Hydrogen yield (%) predicted by ANN
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neural network model to be a much better model. Figure 9
indicates the calibration and validation regression error was
found to be more streamlined and more accurate with
ANN to within (±6).

For further analysis, the prediction error distribution as a
statistical index for the model evaluation was used as in
the following simple equation:

(7)

Where PE is the prediction error and H is the hydrogen
yield. Figures (10, 11) show the error distribution for the
model output during training (exp# 1 to 10) and during the
testing session (exp # 11 to 15), respectively. It can be
observed from figure 10 that the ANN model could provide
significantly higher accuracy, with errors below 6%. On
the other hand, higher levels of errors have been observed
during the testing session, as presented in figure 11, due to
the significant changes in the input pattern for the model.
However, the ANN model still provides acceptable levels
of error, lower than 10%, except in one case (exp # 13).
This result showed that the neural network could be
successfully used to describe the effects of the
temperature, initial pH and glucose concentration on the
hydrogen yield, and it is in agreement with the report by
[34, 38, 39]. For more verification, table 2 shows a
comparison of the prediction of hydrogen yield using the
ANN model and the BWD model using equation 4. The
ANN model was able to reduce the prediction error in the
hydrogen yield to be less than ± 6%; in contrast, the BWD
model was not able to achieve a similar level of accuracy.
The performance of the ANN model in columns 5, 6 of
table 2 shows only one case similarity (exp #4) and
provides relatively lower accuracy for (exp # 8), whereas
ANN outperformed the BWD model for the predicted
hydrogen yield in 13 experiments out of 15. As a result, it is
much more advantageous to use the ANN model to predict
the hydrogen yield with utmost accuracy using a number
of variables and experimental patterns instead of the BWD
model. The predicted maximum hydrogen yield was 81.8%
at the optimum operating condition of 10 g/L initial glucose
concentration, 37oC reaction temperature, and 6.0±0.2
initial medium pH. The observed experimental yield was
approximately 4.30 % lower than the model prediction
based on the experimental conditions.

Fig. 9. Calibration and validation error of H2 yield
experiments with ANN

Fig. 10. Training process of hydrogen yield using ANN

Fig. 11. Testing process of hydrogen yield using ANN

Further Developments in ANN for Predicting Hydrogen Yield
It is common in ANN development to train several

different networks with different architectures and to
select the best one based on the performance of the
networks with testing/validation sets. A major
disadvantage of such an approach is that it assumes that
the performance of the networks for all other possible
testing sets will usually be similar, which is statistically
incorrect. Moreover, observing the performance of the
fifteen developed ANN models tested with the four testing
sets makes it obvious that no single network has the
optimal prediction for all the testing data sets. Therefore,
better accuracy compared to the best reported by any single
network can be achieved if an optimized algorithm can be
developed to use all of these networks. Another interesting
observation is that the effect of the transfer function is as
important as the number of layers and neurons in each
layer. This can be observed when comparing the
performance of two networks with similar number of
hidden layers and neurons but with different transfer
functions. Further discussion on the effect of the optimal
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Table 2
EXPERIMENTAL DESIGN FOR

CONSTRUCTING STATISTICAL AND ANN
MODELS

combination of different transfer function for specific
applications is beyond the scope of this study.

Conclusions
In this research, ANN successfully predicted hydrogen

yield using CSN1-4 with three variables: reaction
temperature, initial medium pH and initial glucose
concentration. The proposed ANN-based model reliably
predicts hydrogen yield and could be used as a predictive
controller for management and operation of large-scale
hydrogen-fermenting systems. The neural network with
its non-linear architecture could provide a significant level
of accuracy in predicting hydrogen yield under different
stochastic patterns of temperature, initial pH and glucose
concentration. Sixty experimental data records have been
used to develop the ANN model. The results showed that
the proposed ANN widens the range of the hydrogen yield
prediction with consideration of the different levels of
stochastic pattern of the input up to 60 records of hydrogen
yield experiments, out of which 50 records were fixed as
the training session and the last 10 records for the testing
session. The results also showed that the proposed ANN
model achieved a consistent level of accuracy for (HY),
while in the training and testing stages for (HY) prediction,
the accuracy was within a maximum error of (±6%).
Moreover, using 15 data records yielded the same error.
Furthermore, a comparison analysis with a traditional Box-
Wilson Design (BWD) statistical approach has been
introduced and shows that the ANN model output
significantly outperformed the BWD. Consequently, the
ANN overcomes the limitation of the BWD approach, which
merely considers a limited length of stochastic patterns
for hydrogen yield (15 records).
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